Chapter 11: Infinite Sequences and Series

Section 11.1: Sequences

Objective: In this lesson, you learn how to define sequences and determine their convergence or divergence using the Limit Laws, the Squeeze Theorem, boundedness, or monotonicity.

I. Infinite Sequences

Definition: A sequence

A sequence is a list of *n* numbers written in a definite order: $a_1, a_2, a_3, \ldots, a_n, \ldots$ The number a_1 is called the **first term**, a_2 is the **second term**, and in general, a_n is the *n*th term.

Remark:

- The sequence $\{a_1, a_2, \ldots\}$ is also denoted by $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$.
- A sequence can be defined as a function whose domain is the set of all positive integers.

Example 1: Find a formula for the general term a_n of the sequence

a. $\{5, 8, 11, 14, 17, ...\}$ Each term is larger than the preceding term by $\}$ d=+s+s+s+s+s+s. 0

f(n) = an, n = 1, 23.5

80)

$$q_{n} = q_{1} + d(n-1) = 5 + 3(n-1) = 5 + 3n-3 = 3n+2$$

 $N = 1 = 3 \cdot 1 + 2 = 5$, $N = 3, = 3 \cdot 3 \cdot 5 + 2 = 11$
 $N = 2 = 3 \cdot 2 + 2 = 8$ / $Sa_{n} = (3n+2)n=1$

b.
$$\left\{\frac{1}{l}, \frac{2}{3}, \frac{3}{7}, \frac{4}{15}, \dots\right\}$$

 $\left\{\begin{array}{c} \alpha_{N} \\ \gamma_{N} \\ \gamma_{N$

Example 2: The Fibonacci sequence is defined recursively by

$$f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}$$
 for $n \ge 3$.
Find the first 8 terms.

Example 3: Write out the first few terms of the sequence $\{\cos n\pi\}_{n=2}^{\infty} = \left\{ \cos (n+1) \mathcal{F} \right\}_{n=1}^{\infty}$

$$n=2 \implies (os 2\pi = 1)$$

$$n=3 \implies cos 3\pi = -1$$

$$n=4 \implies cos 4\pi = 1$$

$$n=7 \implies (os 5\pi = -1)$$

$$\int (os n\pi)^{\alpha}_{n=2} = (1, -1, 1, -1, 4, -1, ..., 7)$$

$$= ((-1)^{n+1})^{\alpha}_{n=1} = ((-1)^{n+1})^{\alpha}_{n=0} = \int (-1)^{n-1}_{n=1}$$

Example 4: Find a formula for the general term a_n of the sequence

$$\begin{cases} \frac{1}{5}, \frac{-2}{25}, \frac{6}{125}, \frac{-24}{625}, \frac{120}{3125}, \cdots \\ 5^{2}, 5^{2}, 5^{2}, 5^{4}, \cdots \end{cases} \qquad p_{1}! = n(n-1)(n-2)* + n(n) \\ 0 \downarrow = 1 \\ 1 \downarrow = 1 \\ 2 \downarrow = 2*i = 2 \\ 3 \downarrow = 3*2*i = 6 \\ 4 \downarrow = 4*3*2*i = 24 \\ 5 \downarrow = 120 \end{cases}$$

Presenting sequences

ii. Using the xy-coordinate : since a sequence is a function whose domain is the set of positive integers, its graph consists of points with coordinates $(1, a_1), (2, a_2), \ldots, (n, a_n), \ldots$

II. The Limit of a Sequence

We can talk about a limit L of a sequence.

Definition: Limit of a sequence

A sequence $\{a_n\}$ has the limit L and we write

 $\lim_{n \to \infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty,$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If the limit $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or it is **convergent**). Otherwise, we say the sequence **diverges** (or it is **divergent**).

Example 6: Does the sequence converge?

Since the only difference between $\lim_{n\to\infty} a_n = L$ and $\lim_{x\to\infty} f(x) = L$ is that n is required to be an integer. Thus, we have the following theorem.

If $\lim_{x \to \infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n \to \infty} a_n = L$.

Example 7: Does the sequence converge?
a.
$$a_n = \left\{\frac{2n}{n+3}\right\} = \frac{2}{q}, \frac{4}{q}, \frac{4}{q}, \frac{5}{q}, \frac{5}{q}, \frac{5}{q}, \frac{10}{q}, \frac{10}{q}, \frac{10}{q}, \frac{10}{12}, \frac{$$

d.
$$a_n = \{\sqrt[n]n\} = \sqrt{1 - 1}, \sqrt{2}, \sqrt[3]{3}, \sqrt[3]{4}, \sqrt{6}, \dots$$

let $a_n = f(n)$
 $f(x) = \sqrt[3]{x} = x^{\frac{1}{2}}$
 $b_{1n} f(x) = \sqrt[3]{x} = x^{\frac{1}{2}}$
 $b_{1n} f(x) = \sqrt[3]{x} = x^{\frac{1}{2}}$
 $let \gamma = x^{\frac{1}{2}}$
 $ln\gamma = ln x^{\frac{1}{2}} = \frac{1}{2} lnx$
 $lny = ln x^{\frac{1}{2}} = \frac{1}{2} lnx$
 $lnm ln\gamma = lim \frac{lnx}{2} = \frac{a}{2} e^{0} = 1$
 $ln lim\gamma = 0$
 $ln lim\gamma = 0$
 $ln lim\gamma = 0$
 $ln lim\gamma = 1$
 $lim \chi = 1$

Limit Laws for sequence

The Limit Laws for functions also hold for the limits of sequences and their proofs are similar.

Limit Laws for sequence

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then 1. $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$. 2. $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$. 3. $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$. 4. $\lim_{n \to \infty} c = c$. 5. $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$. 6. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$, if $\lim_{n \to \infty} b_n \neq 0$. 7. $\lim_{n \to \infty} (a_n)^b = [\lim_{n \to \infty} a_n]^b$, if b > 0 and $a_n > 0$.

Example 8: Does the sequence converge?

$$a_{n} = \left\{ \frac{3n}{n+2} + \frac{n^{2}}{n^{2}+1} \right\}$$

$$\lim_{N \to M} a_{N} = \lim_{N \to M} \left\{ \frac{3n}{n+2} + \frac{n^{2}}{n^{2}+1} \right\}$$

$$= \lim_{N \to M} \frac{3n}{n+2} + \lim_{N \to M} \frac{n^{2}}{n^{2}+1}$$

$$= \lim_{N \to M} \frac{3n}{n+2} + \lim_{N \to M} \frac{n^{2}}{n^{2}+1}$$

$$= \lim_{N \to M} \frac{3n}{n} + \lim_{N \to M} \frac{n^{2}}{n^{2}}$$

$$= 3 + 1 = 4$$

$$(on Mgent.$$

The Squeeze Theorem

Theorem 2

The Squeeze Theorem also hold for sequences: If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then

$$\lim_{n \to \infty} b_n = L.$$

Example 9: Does the sequence converge?

$$a_{n} = \frac{n!}{n^{n}}$$

$$l_{1} \frac{2}{4} \int_{0}^{6} \frac{6}{3^{3}} \int_{0}^{\frac{24}{49}} \frac{24}{49} \int_{0}^{6} \frac{1}{2} \int_{0}^{6} \frac{1}{2} \int_{0}^{2} \frac{1$$

Theorem 3

If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Example 10: Calculate $\lim_{n \to \infty} \frac{(-1)^n n^2}{n^2 + 1}$

$$\lim_{N \to d} \left| \frac{(-1)^{N} n^{2}}{n^{2} + 1} \right| = \lim_{N \to d} \frac{n^{2}}{n^{2} + 1} = \lim_{N \to d} \frac{n^{2}}{n^{2}} = 1 \pm 0$$

$$\sum_{N \to d} \left| \frac{\ln n}{n^{2} + 1} - \frac{\ln n}{n^{2} + 1} \right| = 0, N.E$$

$$0 \leq \lim_{n \to a} \left| \frac{\cos n\pi}{n} \right| \leq \lim_{n \to a} \frac{1}{n} = 0 = \pi \lim_{n \to a} \left| \frac{\cos n\pi}{n} \right| = 0$$

Example 12: For what values of r is the sequence $\{r^n\}$ convergent?

 $(0) \quad |\vec{f} | \vec{r} = 1 \implies n = 1 \implies n = 1 \quad (n = 1) \quad (n$ $O = \int O < r < j \Rightarrow \int I m r^{n} = 0$ lim (-1) h=a (-2) = lin (-1)^M n-3a1 - 2n lin tin >0 lim (E1)ⁿ - lim 1 = 170 **Example 13:** For what values of p is the sequence $\left\{\frac{1}{n^p}\right\}$ convergent? CONY, $\bigcirc if p = 0 \implies \lim_{n \to a} \frac{1}{n^0} = \lim_{n \to a} \frac{1}{n^0} = 1$ CONY OFP>O= In the IF= O OFP<0 In In = ~ Win. $\frac{1}{n^{-2}} = n^2$ $\lim_{n \to ar} \frac{1}{n^p} = \begin{cases} 1 & p=0 \\ 0 & p>0 \\ \sin p & p<0 \end{cases}$ $P < 0 \Rightarrow \frac{1}{\sqrt{12}} = \sqrt{2} \Rightarrow \sqrt{2} \sqrt{2} \Rightarrow \sqrt{2}$

III. Monotonic and Bounded Sequences

Definition

A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing. If an is increasing \Rightarrow and $q_2 < a_3 < a_4 < \dots < a_{n-1} < \dots < (1 + a_n) < 1 + a_n <$

Example 14: Determine whether the sequence is increasing or decreasing.

a.
$$a_n = 1 + \frac{1}{n}$$
 compare with a_{n+1}
 $a_n = 1 + \frac{1}{n}$ $a_{n+1} = 1 + \frac{1}{n+1}$
 $n < n+1$ $n > 1$
 $\frac{1}{n} > \frac{1}{n+1}$ $n > 1$
 $\frac{1}{n} > \frac{1}{n+1}$ $n > 1$
 $\frac{1}{n} > n > 1 + \frac{1}{n+1}$
 $a_n > a_{n+1}$ a_{n+1} docreasing M
 $b. b_n = 1 - \frac{1}{n}$ $b_{n+1} = 1 - \frac{1}{n+1}$
 $n < n+1$
 $\frac{1}{n} > \frac{1}{n+1}$
 $-\frac{1}{n} < \frac{1}{n+1}$
 $1 - \frac{1}{n} < 1 - \frac{1}{n+1}$ $b_n < b_{n+1}$ increasing M
 $c. c_n = 1 + \frac{(-1)^n}{n+1}$ $b_n < b_{n+1}$ increasing M
 $c. c_n = 1 + \frac{(-1)^n}{n+1} > \frac{5}{1 - \frac{1}{2}} > \frac{1}{1 + \frac{1}{4}} > 1 - \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{2$

Definition

A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

 $a_n \leq M$

for all $n \ge 1$. It is **bounded below** if there is a number m such that

 $m \leq a_n$

for all $n \ge 1$. If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

Note the following:

- i. A sequence can be bounded above but not below.
- ii. Not every bounded sequence is convergent.

Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.

Example 15: Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

Example 16: Determine whether the sequence $a_n = ne^{-n}$ is increasing or decreasing. Is the sequence bounded?

Example 17: Find the limit of $\left\{\sqrt{3}, \sqrt{3\sqrt{3}}, \sqrt{3\sqrt{3\sqrt{3}}}, \ldots\right\}$.

$$\begin{aligned} \mathbf{Q}_{1} = \sqrt{3} &= 3^{1/2} \\ \mathbf{Q}_{2} = \sqrt{3}\sqrt{3} &= \sqrt{3} \cdot 3^{1/2} = \sqrt{3^{3/2}} = \sqrt{3^{3/2}} = 3^{1/2} = 3^{1/2} \\ \mathbf{Q}_{3} = \sqrt{3}\sqrt{3} = \sqrt{3} \cdot 3^{1/2} = \sqrt{3^{3/2}} = \sqrt{3$$

$$a_{y} = = =$$

$$\sum_{n=1}^{n} \frac{2^{n}}{2^{n}} = \frac{1}{2^{n}} = \left\{ \begin{array}{c} 1 - \frac{1}{2^{n}} \\ 3 \end{array} \right\}_{n=1}^{n}$$

$$a_{n} = 3 = \left\{ \begin{array}{c} 3 \end{array} \right\}_{n=1}^{n}$$

$$a_{n} = 1$$

$$1 - \frac{1}{\alpha} = 3$$

= 3 = 3.